df count missing values
In [5]: df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
In [6]: df.isna().sum()
Out[6]:
a    1
b    2
dtype: int64
                                
                            df count missing values
In [5]: df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
In [6]: df.isna().sum()
Out[6]:
a    1
b    2
dtype: int64
                                
                            find the number of nan per column pandas
In [1]: s = pd.Series([1,2,3, np.nan, np.nan])
In [4]: s.isna().sum()   # or s.isnull().sum() for older pandas versions
Out[4]: 2
                                
                            count na pandas
>>> df = pd.DataFrame({"Person":
...                    ["John", "Myla", "Lewis", "John", "Myla"],
...                    "Age": [24., np.nan, 21., 33, 26],
...                    "Single": [False, True, True, True, False]})
>>> df
   Person   Age  Single
0    John  24.0   False
1    Myla   NaN    True
2   Lewis  21.0    True
3    John  33.0    True
4    Myla  26.0   False
df.count()
Person    5
Age       4
Single    5
dtype: int64
                                
                            Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us